
Chapter 31

Market Regime Detection with
Hidden Markov Models using
QSTrader

In the previous chapter on Hidden Markov Models it was shown how their application to index
returns data could be used as a mechanism for discovering latent "market regimes". The returns
of the S&P500 were analysed using the R statistical programming environment. It was seen that
periods of differing volatility were detected, using both two-state and three-state models.

In this chapter the Hidden Markov Model will be utilised within the QSTrader framework as
a risk-managing market regime filter. It will disallow trades when higher volatility regimes are
predicted. The hope is that by doing so it will eliminate unprofitable trades and possibly remove
volatility from the strategy, thus increasing its Sharpe ratio.

In order to achieve this some small code modifications to QSTrader were necessary, which are
part of the current version as of the release date of this book.

The market regime overlay will be paired with a simplistic short-term trend-following strategy,
based on simple moving average crossover rules. The strategy itself is relatively unimportant for
the purposes of this chapter, as the majority of the discussion will focus on implementing the risk
management logic.

It should be noted that QSTrader is written in Python, while the previous implementation
of the Hidden Markov Model was carried out in R. Hence for the purposes of this chapter it is
necessary to utilise a Python library that already implements a Hidden Markov Model. hmmlearn
is such a library and it will be used here.

31.1 Regime Detection with Hidden Markov Models

Hidden Markov Models will briefly be recapped. For a full discussion see the previous chapter in
the Time Series Analysis section.

Hidden Markov Models are a type of stochastic state-space model. They assume the existence
of "hidden" or "latent" states that are not directly observable. These hidden states have an
influence on values which are observable, known as the observations. One of the goals of the
model is to ascertain the current state from the set of known observations.

457

https://hmmlearn.readthedocs.io/en/latest/


458

In quantitative trading this problem translates into having "hidden" or "latent" market regimes,
such as changing regulatory environments, or periods of excess volatility. The observations in
this case are the returns from a particular set of financial market data. The returns are indirectly
influenced by the hidden market regimes. Fitting a Hidden Markov Model to the returns data
allows prediction of new regime states, which can be used a risk management trading filter
mechanism.

31.2 The Trading Strategy

The trading strategy for this chapter is exceedingly simple and is used because it can be well
understood. The important issue is the risk management aspect, which will be given significantly
more attention.

The short-term trend following strategy is of the classic moving average crossover type. The
rules are simple:

• At every bar calculate the 10-day and 30-day simple moving averages (SMA)

• If the 10-day SMA exceeds the 30-day SMA and the strategy is not invested, then go long

• If the 30-day SMA exceeds the 10-day SMA and the strategy is invested, then close the
position

This is not a particularly effective strategy with these parameters, especially on S&P500 index
prices. It will not really achieve much in comparison to a buy-and-hold of the SPY ETF for the
same period.

However, when combined with a risk management trading filter it becomes more effective due
to the potential of eliminating trades occuring in highly volatile periods, where such trend-following
strategies can lose money.

The risk management filter applied here works by training a Hidden Markov Model on S&P500
data from the 29th January 1993 (the earliest available data for SPY on Yahoo Finance) through
to the 31st December 2004. This model is then serialised (via Python pickle) and utilised with a
QSTrader RiskManager subclass.

The risk manager checks, for every trade sent, whether the current state is a low volatility
or high volatility regime. If volatility is low any long trades are let through and carried out. If
volatility is high any open trades are closed out upon receipt of the closing signal, while any new
potential long trades are cancelled before being allowed to pass through.

This has the desired effect of eliminating trend-following trades in periods of high vol where
they are likely to lose money due to incorrect identification of "trend".

The backtest of this strategy is carried out from 1st January 2005 to 31st December 2014,
without retraining the Hidden Markov Model along the way. In particular this means the HMM
is being used out-of-sample and not on in-sample training data.

31.3 Data

In order to carry out this strategy it is necessary to have daily OHLCV pricing data for the SPY
ETF ticker for the period covered by both the HMM training and the backtest. This can be
found in Table 31.3.



459

Ticker Name Period Link

SPY SPDR S&P 500 ETF January 29th 1993 -
31st December 2014

Yahoo Finance

This data will need to placed in the directory specified by the QSTrader settings file if you
wish to replicate the results.

31.4 Python Implementation

31.4.1 Returns Calculation with QSTrader

In order to carry out regime predictions using the Hidden Markov Model it is necessary to
calculate and store the adjusted closing price returns of SPY. To date only the prices have been
stored. The natural location to store the returns is in the PriceHandler subclass. However,
QSTrader did not previously support this behaviour and so it has now been added as a feature.

It was a relatively simple modification involving two minor changes. The first was to add
a calc_adj_returns boolean flag to the initialisation of the class. If this is set to True then
the adjusted returns would be calculated and stored, otherwise they would not be. In order to
minimise impact on other client code the default is set to False.

The second change overrides the "virtual" method _store_event found in the AbstractBarPriceHandler
class with the following in the YahooDailyCsvBarPriceHandler subclass.

The code checks if calc_adj_returns is equal to True. It stores the previous and cur-
rent adjusted closing prices, modifying them with the PriceParser, calculates the percentage
returns and then adds them to the adj_close_returns list. This list is later called by the
RegimeHMMRiskManager in order to predict the current regime state:

def _store_event(self, event):

"""

Store price event for closing price and adjusted closing price

"""

ticker = event.ticker

# If the calc_adj_returns flag is True, then calculate

# and store the full list of adjusted closing price

# percentage returns in a list

if self.calc_adj_returns:

prev_adj_close = self.tickers[ticker][

"adj_close"

] / PriceParser.PRICE_MULTIPLIER

cur_adj_close = event.adj_close_price / PriceParser.PRICE_MULTIPLIER

self.tickers[ticker][

"adj_close_ret"

] = cur_adj_close / prev_adj_close - 1.0

self.adj_close_returns.append(self.tickers[ticker]["adj_close_ret"])

self.tickers[ticker]["close"] = event.close_price

self.tickers[ticker]["adj_close"] = event.adj_close_price

http://chart.finance.yahoo.com/table.csv?s=SPY&a=0&b=29&c=1993&d=11&e=31&f=2014&g=d&ignore=.csv


460

self.tickers[ticker]["timestamp"] = event.time

This modification is already in the latest version of QSTrader, which (as always) can be found
at the Github page.

31.4.2 Regime Detection Implementation

Attention will now turn towards the implementation of the regime filter and short-term trend-
following strategy that will be used to carry out the backtest.

There are four separate files required for this strategy to be carried out. The full listings of
each are provided at the end of the chapter. This will allow straightforward replication of the
results for those wishing to implement a similar method.

The first file encompasses the fitting of a Gaussian Hidden Markov Model to a large period of
the S&P500 returns. The second file contains the logic for carrying out the short-term trend-
following. The third file provides the regime filtering of trades through a risk manager object.
The final file ties all of these modules together into a backtest.

Training the Hidden Markov Model

Prior to the creation of a regime detection filter it is necessary to fit the Hidden Markov Model to
a set of returns data. For this the Python hmmlearn library will be used. The API is exceedingly
simple, which makes it straightforward to fit and store the model for later use.

The first task is to import the necessary libraries. warnings is used to suppress the excessive
deprecation warnings generated by Scikit-Learn, through API calls from hmmlearn. GaussianHMM
is imported from hmmlearn forming the basis of the model. Matplotlib and Seaborn are imported
to plot the in-sample hidden states, necessary for a "sanity check" on the models behaviour:

# regime_hmm_train.py

from __future__ import print_function

import datetime

import pickle

import warnings

from hmmlearn.hmm import GaussianHMM

from matplotlib import cm, pyplot as plt

from matplotlib.dates import YearLocator, MonthLocator

import numpy as np

import pandas as pd

import seaborn as sns

The obtain_prices_df function opens up the CSV file of the SPY data downloaded from
Yahoo Finance into a Pandas DataFrame. It then calculates the percentage returns of the adjusted
closing prices and truncates the ending date to the desired final training period. Calculating the
percentage returns introduces NaN values into the DataFrame, which are then dropped in place:

def obtain_prices_df(csv_filepath, end_date):

"""



461

Obtain the prices DataFrame from the CSV file,

filter by the end date and calculate the

percentage returns.

"""

df = pd.read_csv(

csv_filepath, header=0,

names=[

"Date", "Open", "High", "Low",

"Close", "Volume", "Adj Close"

],

index_col="Date", parse_dates=True

)

df["Returns"] = df["Adj Close"].pct_change()

df = df[:end_date.strftime("%Y-%m-%d")]

df.dropna(inplace=True)

return df

The following function, plot_in_sample_hidden_states, is not strictly necessary for train-
ing purposes. It has been modified from the hmmlearn tutorial file found in the documentation.

The code takes the model along with the prices DataFrame and creates a subplot, one plot
for each hidden state generated by the model. Each subplot displays the adjusted closing price
masked by that particular hidden state/regime. This is useful to see if the HMM is producing
"sane" states:

def plot_in_sample_hidden_states(hmm_model, df):

"""

Plot the adjusted closing prices masked by

the in-sample hidden states as a mechanism

to understand the market regimes.

"""

# Predict the hidden states array

hidden_states = hmm_model.predict(rets)

# Create the correctly formatted plot

fig, axs = plt.subplots(

hmm_model.n_components,

sharex=True, sharey=True

)

colours = cm.rainbow(

np.linspace(0, 1, hmm_model.n_components)

)

for i, (ax, colour) in enumerate(zip(axs, colours)):

mask = hidden_states == i

ax.plot_date(

df.index[mask],

df["Adj Close"][mask],

".", linestyle=’none’,



462

c=colour

)

ax.set_title("Hidden State #%s" % i)

ax.xaxis.set_major_locator(YearLocator())

ax.xaxis.set_minor_locator(MonthLocator())

ax.grid(True)

plt.show()

The output of this particular function is given below:

Figure 31.1:

It can be seen that the regime detection largely captures "trending" periods and highly volatile
periods. In particular the majority of 2008 occurs in Hidden State #1.

This script is tied together in the __main__ function. Firstly all warnings are ignored. Strictly
speaking this is not best practice, but in this instance there are many deprecation warnings
generated by Scikit-Learn that obscure the desired output of the script.

Subsequently the CSV file is opened and the rets variable is created using the np.column_stack
command. This is because hmmlearn requires a matrix of series objects, despite the fact that this
is a univariate model (it only acts upon the returns themselves). Using NumPy in this manner
puts it into the correct format.

The GaussianHMM object requires specification of the number of states through the n_components
parameter. Two states are used in this chapter, but three could also be tested easily. A full
covariance matrix is used, rather than a diagonal version. The number of iterations used in the
Expectation-Maximisation algorithm is given by the n_iter parameter.

The model is fitted and the score of the algorithm output. The hidden states masking the
adjusted closing prices are plotted. Finally the model is pickled (serialised) to the pickle_path,
ready to be used in the regime detection risk manager later in the chapter:



463

if __name__ == "__main__":

# Hides deprecation warnings for sklearn

warnings.filterwarnings("ignore")

# Create the SPY dataframe from the Yahoo Finance CSV

# and correctly format the returns for use in the HMM

csv_filepath = "/path/to/your/data/SPY.csv"

pickle_path = "/path/to/your/model/hmm_model_spy.pkl"

end_date = datetime.datetime(2004, 12, 31)

spy = obtain_prices_df(csv_filepath, end_date)

rets = np.column_stack([spy["Returns"]])

# Create the Gaussian Hidden markov Model and fit it

# to the SPY returns data, outputting a score

hmm_model = GaussianHMM(

n_components=2, covariance_type="full", n_iter=1000

).fit(rets)

print("Model Score:", hmm_model.score(rets))

# Plot the in sample hidden states closing values

plot_in_sample_hidden_states(hmm_model, spy)

print("Pickling HMM model...")

pickle.dump(hmm_model, open(pickle_path, "wb"))

print("...HMM model pickled.")

Short-Term Trend Following Strategy

The next stage in the process is to create the Strategy class that encapsulates the short-term
trend-following logic, which will ultimately be filtered by the RiskManager module.

As with all strategies developed within QSTrader it is necessary to import some specific classes,
including the PriceParser, SignalEvent and AbstractStrategy base class. This is similar to
many other strategies carried out in the book so the reason for these imports will not be stressed:

# regime_hmm_strategy.py

from __future__ import print_function

from collections import deque

import numpy as np

from qstrader.price_parser import PriceParser

from qstrader.event import (SignalEvent, EventType)

from qstrader.strategy.base import AbstractStrategy



464

The MovingAverageCrossStrategy subclass is actually one of the examples found within
the QSTrader examples directory. However it has been replicated here for completeness. The
strategy uses two double-ended queues, found in the deque module, to provide rolling windows
on the pricing data. This is to calculate the long and short simple moving averages that form the
short-term trend-following logic:

class MovingAverageCrossStrategy(AbstractStrategy):

"""

Requires:

tickers - The list of ticker symbols

events_queue - A handle to the system events queue

short_window - Lookback period for short moving average

long_window - Lookback period for long moving average

"""

def __init__(

self, tickers,

events_queue, base_quantity,

short_window=10, long_window=30

):

self.tickers = tickers

self.events_queue = events_queue

self.base_quantity = base_quantity

self.short_window = short_window

self.long_window = long_window

self.bars = 0

self.invested = False

self.sw_bars = deque(maxlen=self.short_window)

self.lw_bars = deque(maxlen=self.long_window)

All QSTrader AbstractStrategy-derived subclasses use a calculate_signals method to
generate SignalEvent objects. The method here firstly checks whether the event is an OHLCV
bar. For instance, it could be a SentimentEvent (as in other strategies) and thus a check is
required. The prices are appended to the deques in the correct manner, thus providing rolling
windows over which to perform the SMA.

If there are enough bars to perform the moving averages then they are both calculated. Once
these values are present the trading rules described above are carried out. If the short window
SMA exceeds the long window SMA, and the strategy is not already invested, then it generates a
long position of base_quantity shares. If the long window SMA exceeds the short window SMA
the position is closed if already invested:

def calculate_signals(self, event):

# Applies SMA to first ticker

ticker = self.tickers[0]

if event.type == EventType.BAR and event.ticker == ticker:

# Add latest adjusted closing price to the

# short and long window bars

price = event.adj_close_price / float(



465

PriceParser.PRICE_MULTIPLIER

)

self.lw_bars.append(price)

if self.bars > self.long_window - self.short_window:

self.sw_bars.append(price)

# Enough bars are present for trading

if self.bars > self.long_window:

# Calculate the simple moving averages

short_sma = np.mean(self.sw_bars)

long_sma = np.mean(self.lw_bars)

# Trading signals based on moving average cross

if short_sma > long_sma and not self.invested:

print("LONG: %s" % event.time)

signal = SignalEvent(ticker, "BOT", self.base_quantity)

self.events_queue.put(signal)

self.invested = True

elif short_sma < long_sma and self.invested:

print("SHORT: %s" % event.time)

signal = SignalEvent(ticker, "SLD", self.base_quantity)

self.events_queue.put(signal)

self.invested = False

self.bars += 1

Regime Detection Risk Manager

The subclassed AbstractRiskManager object is the first major usage of risk management applied
separately to a strategy within the book. As outlined above the goal of this object is to filter the
short-term trend-following trades when in an undesirable high volatility regime.

All RiskManager subclasses require access to an OrderEvent as they have the power to
eliminate, modify or create orders depending upon the risk constraints of the portfolio:

# regime_hmm_risk_manager.py

from __future__ import print_function

import numpy as np

from qstrader.event import OrderEvent

from qstrader.price_parser import PriceParser

from qstrader.risk_manager.base import AbstractRiskManager

The RegimeHMMRiskManager simply requires access to the deserialised HMM model file. It
also keeps track of whether the strategy is "invested" or not, since the Strategy object itself will
have no knowledge of whether its signals have actually been executed:

class RegimeHMMRiskManager(AbstractRiskManager):



466

"""

Utilises a previously fitted Hidden Markov Model

as a regime detection mechanism. The risk manager

ignores orders that occur during a non-desirable

regime.

It also accounts for the fact that a trade may

straddle two separate regimes. If a close order

is received in the undesirable regime, and the

order is open, it will be closed, but no new

orders are generated until the desirable regime

is achieved.

"""

def __init__(self, hmm_model):

self.hmm_model = hmm_model

self.invested = False

A helper method, determine_regime, uses the price_handler object and the sized_order
event to obtain the full list of adjusted closing returns calculated by QSTrader (see the code in
the previous section for details). It then uses the predict method of the GaussianHMM object to
produce an array of predicted regime states. It takes the latest value and then uses this as the
current "hidden state", or regime:

def determine_regime(self, price_handler, sized_order):

"""

Determines the predicted regime by making a prediction

on the adjusted closing returns from the price handler

object and then taking the final entry integer as

the "hidden regime state".

"""

returns = np.column_stack(

[np.array(price_handler.adj_close_returns)]

)

hidden_state = self.hmm_model.predict(returns)[-1]

return hidden_state

The refine_orders method is necessary on all AbstractRiskManager-derived subclasses.
In this instance it calls the determine_regime method to find the regime state. It then creates
the correct OrderEvent object, but crucially at this stage does not return it yet:

def refine_orders(self, portfolio, sized_order):

"""

Uses the Hidden Markov Model with the percentage returns

to predict the current regime, either 0 for desirable or

1 for undesirable. Long entry trades will only be carried

out in regime 0, but closing trades are allowed in regime 1.

"""

# Determine the HMM predicted regime as an integer



467

# equal to 0 (desirable) or 1 (undesirable)

price_handler = portfolio.price_handler

regime = self.determine_regime(

price_handler, sized_order

)

action = sized_order.action

# Create the order event, irrespective of the regime.

# It will only be returned if the correct conditions

# are met below.

order_event = OrderEvent(

sized_order.ticker,

sized_order.action,

sized_order.quantity

)

..

..

The latter half of the method is where the regime detection risk management logic is based.
It consists of a conditional block that firstly checks which regime state has been identified.

If it is the low volatility state #0 it checks to see if the order is a "BOT" or "SLD" action.
If it is a "BOT" (long) order then it simply returns the OrderEvent and keeps track of the fact
that it now has a long position open. If it is "SLD" (close) action then it closes the position if one
is open, otherwise it cancels the order.

If however the regime is predicted to be the high volatility state #1 then it also checks which
action has occurred. It does not allow any long positions in this state. It only allows a close
position to occur if a long position has previously been opened, otherwise it cancels it.

This has the effect of never generating a new long position when in regime #1. However, a
previously open long position can be closed in regime #1.

An alternative approach might be to immediately close any open long position upon entering
regime #1, although this is left as an exercise for the reader!

..

..

# If in the desirable regime, let buy and sell orders

# work as normal for a long-only trend following strategy

if regime == 0:

if action == "BOT":

self.invested = True

return [order_event]

elif action == "SLD":

if self.invested == True:

self.invested = False

return [order_event]

else:

return []

# If in the undesirable regime, do not allow any buy orders



468

# and only let sold/close orders through if the strategy

# is already invested (from a previous desirable regime)

elif regime == 1:

if action == "BOT":

self.invested = False

return []

elif action == "SLD":

if self.invested == True:

self.invested = False

return [order_event]

else:

return []

This concludes the RegimeHMMRiskManager code. All that remains is to tie the above three
scripts/modules together through a Backtest object. The full code for this script can be found,
as with the rest of the modules, at the end of this chapter.

In regime_hmm_backtest.py both an ExampleRiskManager and the RegimeHMMRiskManager
are imported. This allows straightforward "switching out" of risk managers across backtests to
see how the results change:

# regime_hmm_backtest.py

..

..

from qstrader.risk_manager.example import ExampleRiskManager

..

..

from regime_hmm_strategy import MovingAverageCrossStrategy

from regime_hmm_risk_manager import RegimeHMMRiskManager

In the run function the first task is to specify the HMM model pickle path, necessary
for deserialisation of the model. Subsequently the price handler is specified. Crucially the
calc_adj_returns flag is set to true, which sets the price handler up to calculate and store the
returns array.

At this stage the MovingAverageCrossStrategy is instantiated with a short window of 10
days, a long window of 30 days and a base quantity equal to 10,000 shares of SPY.

Finally the hmm_model is deserialised through pickle and the risk_manager is instantiated.
The rest of the script is extremely similar to other backtests carried out in the book, so the full
code will only be outlined at the end of the chapter.

It is straightforward to "switch out" risk managers by commenting the RegimeHMMRiskManager
line, replacing it with the ExampleRiskManager line and then rerunning the backtest:

def run(config, testing, tickers, filename):

..

..



469

pickle_path = "/path/to/your/model/hmm_model_spy.pkl"

..

..

# Use the Moving Average Crossover trading strategy

base_quantity = 10000

strategy = MovingAverageCrossStrategy(

tickers, events_queue, base_quantity,

short_window=10, long_window=30

)

# Use Yahoo Daily Price Handler

price_handler = YahooDailyCsvBarPriceHandler(

csv_dir, events_queue, tickers,

start_date=start_date,

end_date=end_date,

calc_adj_returns=True

)

..

..

# Use an example Risk Manager

#risk_manager = ExampleRiskManager()

# Use regime detection HMM risk manager

hmm_model = pickle.load(open(pickle_path, "rb"))

risk_manager = RegimeHMMRiskManager(hmm_model)

..

..

To run the backtest it is necessary to open up the Terminal and type the following:

$ python regime_hmm_backtest.py

The truncated output is as follows:

..

..

---------------------------------

Backtest complete.

Sharpe Ratio: 0.48

Max Drawdown: 23.98%



470

31.5 Strategy Results

31.5.1 Transaction Costs

The strategy results presented here are given net of transaction costs. The costs are simulated
using Interactive Brokers US equities fixed pricing for shares in North America. They are
reasonably representative of what could be achieved in a real trading strategy.

31.5.2 No Regime Detection Filter

Figure 31.2 displays the tearsheet for the "no filter" strategy.

Figure 31.2: Trend Following Regime Detection without HMM

The underlying strategy is designed to capture short-term trends in the SPY ETF. It posts a
Sharpe Ratio of 0.37, which means it is taking on a substantial amount of volatility in order to
generate the returns. In fact the benchmark has an almost identical Sharpe ratio. The maximum



471

daily drawdown is slightly larger than the benchmark, but it produces a slight increase in CAGR
at 6.41% compared to 5.62%.

In essence the strategy performs about as well as the buy-and-hold benchmark. This is to
be expected given how it behaves. It is a lagged filter and, despite making 41 trades, does not
necessarily avoid the large downward moves. The major question is whether a regime filter will
improve the strategy or not.

31.5.3 HMM Regime Detection Filter

Figure 31.3 displays the tearsheet for the "with HMM filter" strategy.

Figure 31.3: Trend Following Regime Detection with HMM

Note that this application of the regime filter is out-of-sample. That is, no returns data used
within the backtest were used in the training of the Hidden Markov Model.

The regime detection filter strategy produces rather different results. Most notably it reduces
the strategy maximum daily drawdown to approximately 24% compared to that produced by



472

the benchmark of approximately 56%. This is a big reduction in "risk". However the Sharpe
ratio does not increase too heavily at 0.48 because the strategy still endures a lot of associated
volatility to obtain those returns.

The CAGR does not see a vast improvement at 6.88% compared to 6.41% of the previous
strategy but its risk has been reduced somewhat.

Perhaps a more subtle issue is that the number of trades has been reduced from 41 to 31.
While the trades eliminated were large downward moves (and thus beneficial) it does mean that
the strategy is making less "positively expected bets" and so has less statistical validity.

In addition the strategy did not trade at all from early 2008 to mid 2009. Thus the strategy
effectively remained in drawdown from the previous high watermark through this period. The
major benefit, of course, is that it did not lose money when many others would have!

A production implementation of such a strategy would likely periodically retrain the Hidden
Markov Model as the estimated state transition probabilities are very unlikely to be stationary.
In essence, the HMM can only predict state transitions based on previous returns distributions it
has seen. If the distribution changes (i.e. due to some new regulatory environment) then the
model will need to be retrained to capture its behaviour. The rate at which this needs to be
carried out is, of course, the subject of potential future research!

31.6 Full Code

# regime_hmm_train.py

from __future__ import print_function

import datetime

import pickle

import warnings

from hmmlearn.hmm import GaussianHMM

from matplotlib import cm, pyplot as plt

from matplotlib.dates import YearLocator, MonthLocator

import numpy as np

import pandas as pd

import seaborn as sns

def obtain_prices_df(csv_filepath, end_date):

"""

Obtain the prices DataFrame from the CSV file,

filter by the end date and calculate the

percentage returns.

"""

df = pd.read_csv(

csv_filepath, header=0,



473

names=[

"Date", "Open", "High", "Low",

"Close", "Volume", "Adj Close"

],

index_col="Date", parse_dates=True

)

df["Returns"] = df["Adj Close"].pct_change()

df = df[:end_date.strftime("%Y-%m-%d")]

df.dropna(inplace=True)

return df

def plot_in_sample_hidden_states(hmm_model, df):

"""

Plot the adjusted closing prices masked by

the in-sample hidden states as a mechanism

to understand the market regimes.

"""

# Predict the hidden states array

hidden_states = hmm_model.predict(rets)

# Create the correctly formatted plot

fig, axs = plt.subplots(

hmm_model.n_components,

sharex=True, sharey=True

)

colours = cm.rainbow(

np.linspace(0, 1, hmm_model.n_components)

)

for i, (ax, colour) in enumerate(zip(axs, colours)):

mask = hidden_states == i

ax.plot_date(

df.index[mask],

df["Adj Close"][mask],

".", linestyle=’none’,

c=colour

)

ax.set_title("Hidden State #%s" % i)

ax.xaxis.set_major_locator(YearLocator())

ax.xaxis.set_minor_locator(MonthLocator())

ax.grid(True)

plt.show()

if __name__ == "__main__":

# Hides deprecation warnings for sklearn



474

warnings.filterwarnings("ignore")

# Create the SPY dataframe from the Yahoo Finance CSV

# and correctly format the returns for use in the HMM

csv_filepath = "/path/to/your/data/SPY.csv"

pickle_path = "/path/to/your/model/hmm_model_spy.pkl"

end_date = datetime.datetime(2004, 12, 31)

spy = obtain_prices_df(csv_filepath, end_date)

rets = np.column_stack([spy["Returns"]])

# Create the Gaussian Hidden markov Model and fit it

# to the SPY returns data, outputting a score

hmm_model = GaussianHMM(

n_components=2, covariance_type="full", n_iter=1000

).fit(rets)

print("Model Score:", hmm_model.score(rets))

# Plot the in sample hidden states closing values

plot_in_sample_hidden_states(hmm_model, spy)

print("Pickling HMM model...")

pickle.dump(hmm_model, open(pickle_path, "wb"))

print("...HMM model pickled.")

# regime_hmm_strategy.py

from __future__ import print_function

from collections import deque

import numpy as np

from qstrader.price_parser import PriceParser

from qstrader.event import (SignalEvent, EventType)

from qstrader.strategy.base import AbstractStrategy

class MovingAverageCrossStrategy(AbstractStrategy):

"""

Requires:

tickers - The list of ticker symbols

events_queue - A handle to the system events queue

short_window - Lookback period for short moving average

long_window - Lookback period for long moving average

"""



475

def __init__(

self, tickers,

events_queue, base_quantity,

short_window=10, long_window=30

):

self.tickers = tickers

self.events_queue = events_queue

self.base_quantity = base_quantity

self.short_window = short_window

self.long_window = long_window

self.bars = 0

self.invested = False

self.sw_bars = deque(maxlen=self.short_window)

self.lw_bars = deque(maxlen=self.long_window)

def calculate_signals(self, event):

# Applies SMA to first ticker

ticker = self.tickers[0]

if event.type == EventType.BAR and event.ticker == ticker:

# Add latest adjusted closing price to the

# short and long window bars

price = event.adj_close_price / float(

PriceParser.PRICE_MULTIPLIER

)

self.lw_bars.append(price)

if self.bars > self.long_window - self.short_window:

self.sw_bars.append(price)

# Enough bars are present for trading

if self.bars > self.long_window:

# Calculate the simple moving averages

short_sma = np.mean(self.sw_bars)

long_sma = np.mean(self.lw_bars)

# Trading signals based on moving average cross

if short_sma > long_sma and not self.invested:

print("LONG: %s" % event.time)

signal = SignalEvent(ticker, "BOT", self.base_quantity)

self.events_queue.put(signal)

self.invested = True

elif short_sma < long_sma and self.invested:

print("SHORT: %s" % event.time)

signal = SignalEvent(ticker, "SLD", self.base_quantity)

self.events_queue.put(signal)

self.invested = False

self.bars += 1



476

# regime_hmm_risk_manager.py

from __future__ import print_function

import numpy as np

from qstrader.event import OrderEvent

from qstrader.price_parser import PriceParser

from qstrader.risk_manager.base import AbstractRiskManager

class RegimeHMMRiskManager(AbstractRiskManager):

"""

Utilises a previously fitted Hidden Markov Model

as a regime detection mechanism. The risk manager

ignores orders that occur during a non-desirable

regime.

It also accounts for the fact that a trade may

straddle two separate regimes. If a close order

is received in the undesirable regime, and the

order is open, it will be closed, but no new

orders are generated until the desirable regime

is achieved.

"""

def __init__(self, hmm_model):

self.hmm_model = hmm_model

self.invested = False

def determine_regime(self, price_handler, sized_order):

"""

Determines the predicted regime by making a prediction

on the adjusted closing returns from the price handler

object and then taking the final entry integer as

the "hidden regime state".

"""

returns = np.column_stack(

[np.array(price_handler.adj_close_returns)]

)

hidden_state = self.hmm_model.predict(returns)[-1]

return hidden_state

def refine_orders(self, portfolio, sized_order):

"""

Uses the Hidden Markov Model with the percentage returns



477

to predict the current regime, either 0 for desirable or

1 for undesirable. Long entry trades will only be carried

out in regime 0, but closing trades are allowed in regime 1.

"""

# Determine the HMM predicted regime as an integer

# equal to 0 (desirable) or 1 (undesirable)

price_handler = portfolio.price_handler

regime = self.determine_regime(

price_handler, sized_order

)

action = sized_order.action

# Create the order event, irrespective of the regime.

# It will only be returned if the correct conditions

# are met below.

order_event = OrderEvent(

sized_order.ticker,

sized_order.action,

sized_order.quantity

)

# If in the desirable regime, let buy and sell orders

# work as normal for a long-only trend following strategy

if regime == 0:

if action == "BOT":

self.invested = True

return [order_event]

elif action == "SLD":

if self.invested == True:

self.invested = False

return [order_event]

else:

return []

# If in the undesirable regime, do not allow any buy orders

# and only let sold/close orders through if the strategy

# is already invested (from a previous desirable regime)

elif regime == 1:

if action == "BOT":

self.invested = False

return []

elif action == "SLD":

if self.invested == True:

self.invested = False

return [order_event]

else:

return []



478

# regime_hmm_backtest.py

import datetime

import pickle

import numpy as np

from qstrader import settings

from qstrader.compat import queue

from qstrader.event import SignalEvent, EventType

from qstrader.portfolio_handler import PortfolioHandler

from qstrader.position_sizer.naive import NaivePositionSizer

from qstrader.price_handler.yahoo_daily_csv_bar import \

YahooDailyCsvBarPriceHandler

from qstrader.price_parser import PriceParser

from qstrader.risk_manager.example import ExampleRiskManager

from qstrader.statistics.tearsheet import TearsheetStatistics

from qstrader.strategy.base import AbstractStrategy

from qstrader.trading_session import TradingSession

from regime_hmm_strategy import MovingAverageCrossStrategy

from regime_hmm_risk_manager import RegimeHMMRiskManager

def run(config, testing, tickers, filename):

# Backtest information

title = [

#’Trend Following Regime Detection without HMM’

’Trend Following Regime Detection with HMM’

]

pickle_path = "/path/to/your/model/hmm_model_spy.pkl"

events_queue = queue.Queue()

csv_dir = config.CSV_DATA_DIR

initial_equity = 500000.00

start_date = datetime.datetime(2005, 1, 1)

end_date = datetime.datetime(2014, 12, 31)

# Use the Moving Average Crossover trading strategy

base_quantity = 10000

strategy = MovingAverageCrossStrategy(

tickers, events_queue, base_quantity,

short_window=10, long_window=30

)

# Use Yahoo Daily Price Handler



479

price_handler = YahooDailyCsvBarPriceHandler(

csv_dir, events_queue, tickers,

start_date=start_date,

end_date=end_date,

calc_adj_returns=True

)

# Use the Naive Position Sizer

# where suggested quantities are followed

position_sizer = NaivePositionSizer()

# Use an example Risk Manager

#risk_manager = ExampleRiskManager()

# Use regime detection HMM risk manager

hmm_model = pickle.load(open(pickle_path, "rb"))

risk_manager = RegimeHMMRiskManager(hmm_model)

# Use the default Portfolio Handler

portfolio_handler = PortfolioHandler(

PriceParser.parse(initial_equity),

events_queue, price_handler,

position_sizer, risk_manager

)

# Use the Tearsheet Statistics class

statistics = TearsheetStatistics(

config, portfolio_handler,

title, benchmark="SPY"

)

# Set up the backtest

backtest = TradingSession(

config, strategy, tickers,

initial_equity, start_date, end_date,

events_queue, title=title,

price_handler=price_handler,

position_sizer=position_sizer,

risk_manager=risk_manager,

statistics=statistics,

portfolio_handler=portfolio_handler

)

results = backtest.start_trading(testing=testing)

return results



480

if __name__ == "__main__":

# Configuration data

testing = False

config = settings.from_file(

settings.DEFAULT_CONFIG_FILENAME, testing

)

tickers = ["SPY"]

filename = None

run(config, testing, tickers, filename)


